Cálculo diferencial I
Martini Sebastian Peñaira

Cálculo diferencial I

                                      calculo       Cálculo diferencial

La asignatura contribuye a desarrollar un pensamiento lógico-matemático al perfil del ingeniero y aporta las herramientas básicas para introducirse al estudio del cálculo y su aplicación, así como las bases para el modelado matemático. Además, proporciona herramientas que permiten modelar fenómenos de contexto.

La importancia del estudio del Cálculo Diferencial radica principalmente en proporcionar las bases para los temas en el desarrollo de las competencias del Cálculo Integral, Cálculo Vectorial, Ecuaciones Diferenciales y asignaturas de física y ciencias de la ingeniería, por lo que se pueden diseñar proyectos integradores con cualquiera de ellas.

La característica más sobresaliente de esta asignatura es que en ella se estudian las bases sobre las que se construye el cálculo diferencial. Utilizando las definiciones de función y límite se establece uno de los conceptos más importantes del cálculo: la derivada, que permite analizar razones de cambio y problemas de optimización, entre otras. La derivada es tema de trascendental importancia en las aplicaciones de la ingeniería.

La asignatura de Cálculo Diferencial se organiza en cinco temas.

El primer tema se inicia con un estudio sobre los números reales y sus propiedades básicas, así como la solución de problemas con desigualdades. Esto servirá de sustento para el estudio de las funciones de variable real.

El tema dos incluye el estudio del dominio y rango de funciones, así como las operaciones relativas a éstas. También las funciones simétricas, par e impar, escalonadas (definidas por más de una regla de correspondencia), crecientes y decrecientes, periódicas, de valor absoluto, etc.

En el tema tres se introduce la noción intuitiva de límite, así como la definición formal. Se aborda el cálculo de límites por valuación, factorización, racionalización, de límites trigonométricos y los límites laterales. Se incluyen casos especiales de límites infinitos y límites al infinito, así como asíntotas horizontales y verticales. El tema concluye con el estudio de la continuidad en un punto y en un intervalo.

La derivada, en el tema cuatro, se aborda de manera intuitiva obteniendo la pendiente de la recta tangente a una curva y como una razón de cambio. La definición de derivada permite deducir propiedades y reglas de derivación de funciones.